Лекция 10

Преобразование случайных величин

Стандартизация случайной величины

Def. Пусть имеется случайная величина ξ . Соответствующей ей стандартной величиной называется случайная величина $\eta = \frac{\xi - E \xi}{\sigma}$

Свойства:

$$E\eta = 0; D\eta = 1$$

$$E\eta = E\frac{\xi - E\xi}{\sigma} = \frac{1}{\sigma}(E\xi - E\xi) = 0$$
$$D\eta = D\frac{\xi - E\xi}{\sigma} = \frac{1}{\sigma^2}D\xi = 1$$

Стандартизованная случайная величина не имеет единиц измерения, таким образом, ее свойства от них не зависят

<u>Задача:</u> пусть имеется функция g(x) и случайная величина ξ , $\eta = g(\xi)$. Определить ее характеристики

Nota. Если ξ - дискретная случайная величина, то ее законы распределения находятся просто: значения x_i в верхней строке заменяем $g(x_i)$, вероятности остаются прежние. Поэтому будем рассматривать непрерывной случайной величины ξ

Nota. Возможна ситуация, когда ξ - абсолютно непрерывная случайная величина, g(x) - непрерывна, но $g(\xi)$ имеет дискретное распределение

Линейное преобразование

Th. Пусть ξ имеет плотность $f_{\xi}(x)$, тогда $\eta=a\xi+b$, где $a\neq 0$, имеет плотность $f_{\eta}(x)=\frac{1}{|a|}f_{\xi}\left(\frac{x-b}{a}\right)$

Пусть
$$a>0$$
, тогда $F_{\eta}(x)=p(\eta< x)=p(a\xi+b< x)=p(\xi<\frac{x-b}{a})=\int_{-\infty}^{\frac{x-b}{a}}f_{\xi}(t)dt=$
$$\begin{bmatrix} t=\frac{y-b}{a} & dt=\frac{1}{a}dy & y=at+b\\ y(-\infty)=-\infty & y(\frac{x-b}{a})=x \end{bmatrix}=\int_{-\infty}^{x}\frac{1}{a}f_{\xi}(\frac{y-b}{a})dy \Longrightarrow f_{\eta}(x)=\frac{1}{|a|}f_{\xi}(\frac{x-b}{a})$$

Пусть
$$a<0$$
, тогда $F_{\eta}(x)=p(\eta< x)=p(a\xi+b< x)=p(\xi>\frac{x-b}{a})=\int_{\frac{x-b}{a}}^{\infty}f_{\xi}(t)dt=$
$$\begin{bmatrix} t=\frac{y-b}{a} & dt=\frac{1}{a}dy & y=at+b\\ y(\infty)=-\infty & y(\frac{x-b}{a})=x \end{bmatrix}=-\int_{-\infty}^{x}\frac{1}{a}f_{\xi}(\frac{y-b}{a})dy \Longrightarrow f_{\eta}(x)=\frac{1}{|a|}f_{\xi}(\frac{x-b}{a})$$

Следствие

1) Если $\xi \in N(a, \sigma^2)$, то $\eta = \gamma \xi + b \in N(a\gamma + b; \gamma^2 \sigma^2)$

Так как
$$\xi \in N(a, \sigma^2)$$
, то $f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)}{2\sigma^2}}, x \in \mathbb{R}$ Тогда $f_{\eta}(x) = \frac{1}{|\gamma|} \cdot \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(\frac{x-b}{2}-a)^2}{2\sigma^2}} = \frac{1}{|\gamma|\sigma\sqrt{2\pi}}e^{-\frac{(x-b-a\gamma)^2}{2\sigma^2\gamma^2}} \Longrightarrow \eta \in N(b+a\gamma; \sigma^2\gamma^2)$

- 2) Если $\eta \in N(0,1)$ стандартное нормальное распределение, то $\xi = \sigma \eta + a \in N(a,\sigma^2)$
- 3) Если $\eta \in U(0,1)$ стандартное равномерное распределение и a>0, то $\xi=a\eta+b\in U(b,a+b)$
- 4) Если $\xi \in E_{\alpha}$, то $\alpha \xi \in E_1$

Монотонное преобразование

Th. Пусть $f_{\xi}(x)$ - плотность случайной величины ξ , g(x) - строго монотонная функция. Тогда случайная величина $\eta = q(\xi)$ имеет плотность

$$f_{\eta}(x) = |h'(x)|f_{\xi}(h(x)),$$
 где $h(g(x)) = x$

Если g(x) не является монотонной функцией, то поступаем следующим образом: разбиваем g(x) на интервалы монотонности, для каждого i-ого интервала находим $h_i(x)$ и плотность случайной величины ищем по формуле Смирнова: $f_{\eta}(x) = \sum_{i=0}^{n} |h_i'(x)| f_{\xi}(h_i(x))$

Квантильное преобразование

Th. 1. Пусть функция распределения случайной величины ξ $F_{\xi}(x)$ - непрерывная функция. Тогда $\eta = F(\xi) \in U(0,1)$ - стандартное равномерное распределение

Ясно, что $0 \le \eta \le 1$ а) F(x) - строго возрастающая функция. Тогда $\exists F^{-1}(x)$ - обратная, $F_{\eta}(x) = p(\eta < x) =$

$$p(F(\xi) < x) = \begin{cases} 0, & x < 0 \\ p(\xi < F^{-1}(x)) = F(F^{-1}(x)) = x, & 0 \le x \le 1 \text{ - функция распределения } U(0, 1) \\ 1, & x > 1 \end{cases}$$

б) F(x) - не является строго возрастающей функцией - то есть существуют участки постоянства, в этом случае определим F^{-1} как $F^{-1}(x) = \min_t (t \mid F(t) = x)$ - то есть берем самую левую точку такого интервала

Тогда снова будет при $0 \le x \le 1$ $F_{\eta}(x) = p(\eta < x) = p(F(\xi) < x) = F(F^{-1}(x)) = x$

Сформулируем обратную теорему: пусть F(x) - функция распределения (необязательно непрерывная) случайной величины ξ , обозначим $F^{-1}(x) = \inf_t (t \mid F(t) \geq x)$. В случае непрерывной F(x) это определение совпадет с предыдущем

Th. 2. Пусть $\eta \in U(0,1)$ - стандартное равномерное распределение, F(x) - произвольная функция распределения. Тогда $\xi = F^{-1}(\eta)$ имеет функцию распределения F(x)

Данное преобразование $\xi = F^{-1}(\eta)$ называют квантильным

Доказательство аналогично предыдущей теореме

Смысл: датчики случайных чисел имеют стандартное равномерное распределение, из теоремы следует, что при помощи датчика случайных чисел и квантильного преобразования мы сможем смоделировать любое нужно распределение

 $Ex.\ 1.\$ Смоделируем показательное распределение $E_{\alpha}:\ F_{\alpha}(x)= egin{cases} 0, & x<0 \\ 1-e^{-\alpha x}, & x\geq 0 \end{cases}$

 $\eta=1-e^{-\alpha x},\ e^{-\alpha x}=1-\eta,\ x=-rac{1}{lpha}\ln(1-\eta)$ - функция, обратная к $F_{lpha}(x)$ Если $\eta\in U(0,1),$ то $\xi=-rac{1}{lpha}\ln(1-\eta)\in E_{lpha}$

Ex. 2. $\xi \in N(0,1)$, $F_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{z^2}{2}} dz$

Пусть $F_0^{-1}(x)$ - функция обратная к $F_0(x)$

Если $\eta \in U(0,1)$, то $F_0^{-1}(\eta) \in N(0,1)$

Характеристики преобразованной случайной величины

Th. Если ξ - дискретная случайная величина, то $Eg(\xi) = \sum_{i=1}^{\infty} g(x_i) \cdot p_i = \sum_{i=1}^{\infty} g(x_i) \cdot p(\xi = x_i)$ Для непрерывной случайной величины $Eg(\xi) = \int_{-\infty}^{\infty} g(x) f_{\xi}(x) dx$

Свойства моментов

- 1) Если $\xi \ge 0$, то $E\xi \ge 0$
- 2) Если $\xi \leq \eta$, то $E\xi \leq E\eta$

$$\xi \leq \eta \Longrightarrow \eta - \xi \geq 0 \Longrightarrow E(\eta - \xi) \geq 0 \Longrightarrow E\eta - E\xi \geq 0 \Longrightarrow E\eta \geq E\xi$$

- 3) Если $|\xi| \le |\eta|$, то $E|\xi|^k \le E|\eta|^k$
- 4) Если существует момент m_t случайной величины ξ , то существует m_s при s < t (при условии, что интеграл/сумма сходятся)

Пусть s < t. Тогда $|x|^s \le \max(1,|x|^t) \le 1 + |x|^t$, так как при |x| < 1, $|x|^s \le 1$ и при $|x| \ge 1$, $|x|^s \le |x|^t$ $E|\xi|^s \le E|\xi|^t + 1$ и если $E|\xi|^t$ существует (конечно), то $\exists E|\xi|^s$

Th. Неравенство Йенсена. Пусть функция g(x) выпукла вниз, тогда для любой случайной величины ξ

$$Eg(\xi) \geq g(E\xi)$$

Nota. Если g(x) выпукла вверх, знак неравенства меняется

Если g(x) выпукла вниз, то в любой ее точке, можно провести прямую, лежащую не выше графика функции. То есть для любой x_0 существует $k(x_0)$ такой, что $g(x) \ge g(x_0) + k(x_0)(x-x_0)$

Пусть
$$x_0 = E\xi$$
, $g(E\xi) \ge g(E\xi) + k(E\xi)(x - E\xi)$
 $Eg(\xi) \ge Eg(E\xi) + k(E\xi)(E\xi - E\xi)$
=0

 $Eg(\xi) \ge g(E\xi)$

Следствие:

$$Ee^{\xi} \geq e^{E\xi}, \quad E\xi^2 \geq (E\xi)^2, \quad E|\xi| \geq |E\xi|, \quad E\ln(\xi) \leq \ln(E\xi), \quad E\frac{1}{\xi} \geq \frac{1}{E\xi} \text{ при } \xi > 0$$

Ех. на формулу Смирнова: дана плотность распреде-

$$f_{\xi}(x) = \begin{cases} 0, & x < 1 \\ \frac{4}{3x^2}, & 1 \le x \le 4, 0 \\ x > 4 \end{cases}$$
 Найти f_{η} для $\eta = |\xi - 2|$



